
Abstract. An approximate spin function for in®nite
periodic spin lattices is introduced. The ``encapsulated
spin function'' is built from spin blocks variationally
determined on open clusters. It gives a zeroth-order
description of the short-range spin correlation while
insuring a proper translational symmetry with an
appropriate projection of the local spin function over
the entire lattice. A recursion expression is derived that
removes the normalization di�culty that arises in the
projection. The one-dimensional Heisenberg regular
Hamiltonian is tested in the present paper but the model
allows for more complicated topologies of the interac-
tions, including long-range exchange and three-spin
exchange.
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1 Introduction

In the ®eld of strongly correlated electronic and
magnetic materials quantum chemistry contributes by
a quantitative evaluation of magnetic interactions which
are obviously linked to the intimate electronic structure
of the magnetic units, but also to their mutual interac-
tions. Valence bond (VB) theory in its modern formu-
lation [1, 2] teaches us that most electronic assemblies in
molecules and more extended entities may be very
accurately described in terms of a local orbital model.
Magnetic spin half insulators, are manifestly the kind of
electronic ensembles that may be ideally suited for a VB
description consisting of a collection of equivalent non-
orthogonal ``site'' orbitals, singly occupied, and an
attached spin function that accounts for the ¯uctuating
spin coupling schemes. The wavefunction ``natural''
approximation obeys the spin-coupled (SC) formulation
(for Ne electrons) [1]:

WN
SM ���������

Ne!
p

Af/1�r1�/2�r2� . . . /Ne�rNe�HNe
SM�r1 . . . rNe�g ;

where the /i are singly occupied orbitals and HNe
SM is the

global spin function. A is the antisymmetrizer that
involves all permutations of the electrons space and spin
coordinates. Such a wavefunction, when the orbitals and
the spin function are fully optimized without any
orthogonality constraint, provides the best possible
single con®guration wavefunction, accounting for a
large part of the correlation energy. The release of the
orthogonality constraints usually leads to local and non-
orthogonal orbitals. Typically, the overlap between
optimized orbitals located across a chemical bond allows
the inclusion of the essential part of the left-right
correlation between bonding electrons, being almost
equivalent to the variational mixing of covalent and
ionic structures [3]. Therefore, the SC wavefunction
incorporates by construction much more electron corre-
lation than the standard Hartree-Fock wavefunction.
The SC orbitals are fundamentally di�erent from
localized molecular orbitals and re¯ect the impact of
electron repulsion.

When the SC orbitals are weakly overlapping, such a
wavefunction may be used in order to provide an e�ec-
tive spin Hamiltonian [4, 5] relating the magnetic cou-
pling constants to the orbitals shape [6] through the
one-and two-electron integrals involving orbitals within
a certain range. The electronic energy may then be
written as:

E � hW
Ne
SM

��Ĥ��WNe
SMi

hWNe
SMjWNe

SMi
� hHNe

SM

��Ĥspin

��HNe
SMi :

The spin Hamiltonian in its most simpli®ed form may
be expressed in terms of the two-spin exchange operators
P̂ij for any spin pair (i, j):

Ĥspin f/ig� � � E0 f/ig� � �
XNe

�i;j�
Jij f/ig� �P̂ij :

E0 is the ``Hartree energy'' that does not take into
account the antisymmetry of the wavefunction. The JijCorrespondence to: L. Ducasse
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values depend on the shape of the orbitals. With such a
functional, the variationally calculated orbitals and
magnetic constants are intimately linked to the compe-
tition between Coulomb interactions, quantum exchange
and delocalization forces that are themselves dependent
on the nature of the spin correlation around each spin.
This is far more subtle than dimer calculations of the
singlet-triplet gap, but also more demanding since it is
necessary to give a proper account of these interactions
within a reasonable range. The dilemma that is encoun-
tered here is linked to the fact that in magnetic
insulators, the range of exchange interactions is much
shorter than that of the Coulomb potential, but both
have to be incorporated for the ®nal electronic wave-
function to be faithful enough to provide a reliable
picture. In these respects, calculations based on ®nite
size clusters are not suited for obtaining the correct
picture of the magnetic interactions:

1. Open clusters show considerable boundary e�ects,
either in the evolution of spin correlation throughout the
cluster, or in the polarization of the electronic cloud. The
symmetry of such clusters is also far from the actual
symmetry encountered in periodic systems.

2. Finite size clusters with imposed cyclic boundary
conditions may be an alternate way to mimic the crystal
symmetry, but this is only true with speci®c model
electronic Hamiltonians such as the Hubbard Hamilto-
nian [7] restricted to close neighbours. With any long-
range potential, the adequacy of such clusters is subject
to caution. In other words, a Hubbard ring may be
representative of a chain, but a Pariser-Parr-Pople (PPP)
[8] ring includes interactions that are absent from the
in®nite PPP chain and thus should be used with great
care.

On the other hand, performing explicit SC calcula-
tions on a very large to in®nite number of local electrons
is a daunting task. Apart from the non-orthogonality
di�culty that may be avoided for weakly overlapping
SC orbitals following [4±6], there is a crucial need for a
su�ciently ¯exible spin function so that we may consider
that spin correlation is properly accounted for at least
locally.

We may conclude from these considerations that
what is crucially needed for performing SC calculations
on extended periodic systems with a long-range elec-
trostatic potential and a correct picture of the spin state
locally, is an in situ technique. The technique should
allow each spin to feel the same exchange interactions as
its symmetry equivalent neighbours and should be reli-
able in terms of the rendering of the short to medium-
range magnetic order, but also as simple as possible so as
to be employed within a quantum electronic wavefunc-
tion in the SC spirit.

The behaviour of spin correlation is usually regulated
through the use of a formal spin Hamiltonian in its
quantum Heisenberg guise or a more classical one such
as the ``Ising'' model. The exact solutions of these ap-
parently simple models are not known; apart from the
regular one-dimensional (1D) system for which the Be-
the ansatz provides the exact result for regular Heisen-
berg chains [9]. The well-known Lanczos technique [10]

provides exact information on ®nite size clusters but
limitations of the computer memory severely restricts the
maximum size: for the two-dimensional (2D) Heisenberg
model on a square lattice, a maximum number of 36
spins may be handled exactly [11]. Several authors pro-
posed to bypass this limitation by means of exact diag-
onalizations in reduced Hilbert spaces [12±15]. In order
to bypass the severe limitations of ®nite size calculations,
the usage of good embedding techniques provides quite
accurate results on 1D and 2D periodic systems [16]. The
recently proposed density matrix renormalization group
[17, 18] provides an optimized basis truncation in quasi-
1D systems; it provides very accurate results for very
large systems but the study of momentum dependence of
observables is complicated by the use of open boundary
conditions. Cyclic boundary conditions may be em-
ployed but are computationally much more demanding.
The cumulant technique of Becker and Vojta [19] pro-
vides accurate results for spin half 2D antiferromagnets.
Recent quantum Monte Carlo calculations by Sandvik
et al. [20] achieve a relative accuracy of 10ÿ5 on the
S � 1=2 t-J model. The previously mentioned many-
body techniques represent the state of the art in the
study of strongly correlated electrons. Let us mention
the use of cluster expanded wavefunctions that have
been investigated by Klein and Garcia-Bach [21].

Calculating the optimized spin state for in®nite peri-
odic systems is nevertheless far from being trivial. The
question also arises whether it is of any relevance when
one is more interested in the nature of the spin-correla-
tion functions within a medium range than in obtaining
the ``exact'' energy for the in®nite system. In this paper,
we introduce an encapsulated spin function (ESF)
which, from periodically replicated ®nite size clusters,
builds up a spin function that preserves translational
symmetry, while retaining some extensive spin resonance
within a certain range. The main purpose of this work is
to provide a simple and tractable scheme for future use
in approximate non-orthogonal SC calculations on pe-
riodic systems so as to assess the possibility of calcu-
lating in situ optimized magnetic coupling interactions

2 Model

In this paper for the sake of simplicity, we only treat
periodic 1D chains with one spin per unit cell. The 1D
character is not essential for what follows. Extension to
2D or 3D lattices is not di�cult, apart from the
computational e�ort required to give a proper account
of the spin function in a spin block that should be as
large as possible.

The 1D chain has unit cell parameter a. It is divided
into supercells containing P spins each with supercell

parameter RP

!
� Pa

!
. We call such a supercell a spin

window (SW). There are P ways for partitioning the
chain into SWs of P spins. If we start from an arbitrary
``reference partition'' called partition 0, all other parti-
tions may be deduced from the reference by a translation
of 1; 2; . . . ;Pÿ 1 elementary translations. In Fig. 1,

RP

!
� 4a

!
and the SW contains four spins. Figure 2

shows distinct partitions for P � 4.
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3 The encapsulated spin function (ESF)

The normalized spin function for the ith SW in partition
M is Hi

M. All SWs are described by the same function
which may be developed into any convenient basis fdkg
of spin functions. We assume it is a spin eigenfunction
with S = M = 0 for an even number of electrons.

Hi
M�P��iÿ 1� � 1; . . . ;P�i�
�
X
k

Ckdk�P��iÿ 1� � 1; . . . ;P�i� :

We then build the normalized product of these spin
functions for N windows:

HM;N � P
N

i�1
Hi

M :

HM;N is not a proper spin function because it does not
have the proper translational symmetry. In order to
restore this symmetry, we project HM;N using the

``translation'' operators T̂
n
where T̂

1
is the elementary

translation with unit cell vector a
!
. T̂

1
may also be

considered as the cyclic permutation of the spin indices
of rank 1. Such translations generate new partitions of
the chain:

T̂
n
HM;N � HM�n;N :

In T̂
1
H0;N � H1;N for example, the ®rst spin of the ®rst

window has the label ``2''.
The fully symmetric unnormalized ESF is thus:

H �
XPÿ1
n�0

HM�n;N :

The evaluation of the energy integral for the sym-
metry-adapted spin function requires the calculation of
all hHM;NjĤjHL;Ni and overlaps hHM;NjHL;Ni. These are
integrals over all spin coordinates between non-orthog-
onal functions, similar in form, but expressed in parti-
tions that do not coincide. With

hHjĤjHi �
XPÿ1
n�0

XPÿ1
m�0
hHM�n;NjĤjHM�m;Ni

" #
and

hHjHi �
XPÿ1
n�0

XPÿ1
m�0
hHM�n;NjHM�m;Ni

" #
;

the normalized energy becomes

E �
PPÿ1

n�0hHM;NjĤjHM�n;NiPPÿ1
n�0hHM;NjHM�n;Ni

:

4 The spin Hamiltonian

The Heisenberg Hamiltonian or Dirac vector model may
be cast in the following form:

Ĥ �
XP�N
r < s

Jrs P̂rs ;

where the P̂rs are the elementary transpositions of spin
indices r and s. For simplicity we set

Jrs � J for s � r� 1;

Jrs � 0 otherwise ;

with implicit cyclic boundary conditions. This yields the
standard ®rst neighbour Heisenberg model.

The Hamiltonian is divided into an intra-SW part ĤI

and an inter-SW part ĤII:

ĤI �
XN
i�1

Ĥi
I � J

XNÿ1
i�0

XPÿ1
p�1

P̂P�i�p;P�i�p�1 ;

ĤII �
XN
i�1

Ĥi;i�1
II � J

XN
i�1

P̂P�i;P�i�1 :

Spin P*i is the last spin of SW i, spin P*i + 1 is the ®rst
of SW i +1. The last spin of the last SW in the chain is
connected with the ®rst spin of the ®rst SW.

5 Diagonal matrix elements

The expectation value of ĤI gives:

hHM;NjĤIjHM;Ni �
XN
i�1
hHi

MjĤi
IjHi

Mi

� NhHi
MjĤ1

I jHi
Mi � NEI :

As expected, the intra-SW terms give an extensive
contribution to the energy. If we choose Hi

M as the
lowest eigenvector of Ĥi

I with eigenvalue e, we get:

Fig. 1. P � 4-spin window in a regular 1D chain

Fig. 2. Three among the four partitions for P � 4
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hHM;NjĤIjHM;Ni � N e :

The expectation value of ĤII gives:

hHM;NjĤIIjHM;Ni �
XN
j�1
hHj

MHj�1
M jĤj; j�1

II jHj
MHj�1

M i

� NEII :

The inter-SW contribution is also extensive. Calcu-
lating EI and EII only requires the spin coupling coe�-
cients Cn. In the case of the ®rst neighbour Heisenberg
Hamiltonian, EII may be simpli®ed, due to the factorized
form of our spin function. Let us consider the decom-
position of the product Hj

MHj�1
M in terms of Rumer spin

functions fdpg [22], the Pauling superposition pattern

[11] for hd j
pd

j�1
q jd j

rd
j�1
s i is made of two disconnected sets.

When evaluating the superposition pattern for

hd j
pd

j�1
q jĤj; j�1

II jd j
rd

j�1
s i, it turns out that the number of

Pauling islands is always decreased by one and the
number of arrow reversals is even; therefore one gets
[23]:

hd j
pd

j�1
p jĤj; j�1

II jd j
rd

j�1
s i �

J

2
hd j

pd
j�1
q jd j

rd
j�1
s i ;

hHM;NjĤj; j�1
II jHM;Ni � J

2

X
p;q;r;s

Cp Cq Cr Cshdjpdj�1q jdjrdj�1s i

� J

2
hHM;NjHM;Ni � J

2
:

6 O�-diagonal matrix elements

There are only P�Pÿ 1�=2 distinct overlap terms to
calculate that may be obtained recursively. Let us
consider one of these terms involving partitions di�ering
by a translation of n cells. If we superpose the two
partitions, we can identify a common coinciding sub-
partition for HM;N and HM�n;N. We divide each SW of
partition M in two subwindows; the ®rst containing the
®rst n spins, the second describing the remaining Pÿ n
spins. On the other hand the ®rst subwindow in partition
M+n contains Pÿ n spins and the last one n spins, as
illustrated in Fig. 3.

We then proceed as follows: the spin function of a
SW in partition M is decomposed in the direct product
basis of the two subwindows:

Hi
M �

X2n
p

X2Pÿn
q

Cpq ciM; p �ciM;q

and we do the same for partition M+n

Hj
M�n �

X2Pÿn
r

X2n
s

Drs �c j
M�n; r c

j
M�n; s :

The basis functions in the subwindows may have all
possible Sz values. In practice, the ciM; p are simple spin
products for n spins whilst the �ciM;p are spin products for
Pÿ n spins. The coe�cients for non-compatible prod-
ucts are just set to zero. In practical computations,

however, the C and D matrices may actually be com-
pressed, since they contain nothing more than the
eigenvector of ĤI.

In an ordered sequence of the spins along the chain,
HM;N components start with a c1M;p function acting on
spins 1; 2; . . . ; n, whilst HM�n;N components start with a
cNM�n; s function acting on spins 1; 2; . . . ; n.

We now introduce the T�N� matrix with elements:

T�N�as � hHM;NjcNM�n; s HM�n;Nÿ1�cNM�n; ai :
It is implicit that the spin indices coincide in the bra

and the ket. We drop the superscripts on the c functions
hereafter. It can be shown (cf. Appendix) that a recur-
sion formula stands for the T matrices that links ma-
trices for Nÿ 1 and N windows:

T�N�as �
X2n
p

X2Pÿn
r

Cpa Drp T
�Nÿ1�
rs ;

T�N�as �
X2Pÿn
r

X2n
p

Cpa Drp

" #
T�Nÿ1�rs �

X2Pÿn
r

(DC)ra T
�Nÿ1�
rs ;

T�N�as �
X2Pÿn
r

(DC)>ar T
�Nÿ1�
rs � (DC)> T�Nÿ1�

h i
as
;

TN � (DC)> T�Nÿ1�

with, for a single window: T�1� � C>. The T�N� are
rectangular �2Pÿn � 2n� matrices.

The T matrices are thus elements of a (geometrical)
suite and we ®nally get:

TN � (DC)>
� ��Nÿ1�

T�1� :

The overlap integral between the two functions HM;N

and HM�n;N may then easily be expressed in terms of the
T matrix:

hHM;NjHM�n;Ni

�
X2Pÿn
i

X2n
j

DijhHM;NjcM�n;j HM�n;Nÿ1�cM�n;ii

�
X2Pÿn
i

X2n
j

Dij T
�N�
ij :

Fig. 3. Common subdivision of partitions 0 and 1, for P � 4
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O�-diagonal Hamiltonian matrix elements may be
obtained in a similar way. If we consider the eigenvector
Hi

M�n of the intra-window Hamiltonian Ĥi
I:

Ĥi
IjHi

M�ni � ejHi
M�ni :

We easily get (cf. Appendix):

hHM;NjĤi
IjHM�n;Ni

� ehHM;NjHM�n;Ni � e
X2Pÿn
r

X2n
s

Drs T
�N�
rs :

For the inter-window contribution, one obtains (cf.
Appendix):

hHM;NjĤi
IIjHM�n;Ni

� NJ
X2Pÿn
p

X2n
q

X2Pÿn
r

X2n
s

Dpq Drs Cab T
�Nÿ1�
ps

where indices a and b are such that

P̂n; n�1jcM�n;q �cM�n; ri � jcM�n; a �cM�n;bi :
These expressions are applicable to a Heisenberg

Hamiltonian involving any number of neighbours ; the
unique J magnetic exchange constant being replaced by
the relevant Jij's.

7 Results for the regular 1D Heisenberg model

We performed calculations on 1D spin half chains, using
the ®rst neighbour Heisenberg Hamiltonian:

Ĥ �
XP�N
r

2J
^
Sr
!
� ^
Sr
!
�1 ÿ 1

4

� �
�
XP�N
r

J P̂r ; r�1 ÿ 1
ÿ �

:

In the calculations, the J value is taken equal to 1.0.
The Bethe ansatz gives the asymptotic value )2Ln 2 for
the in®nite. We carried out exact diagonalizations for
®nite size rings, ®nite size opened chains and partitioned
rings of di�erent sizes, and di�erent window sizes.

7.1 Two-window rings

Our calculation on two-window rings may be compared
to exact diagonalizations on chains and rings with the
same overall number of spins. Figure 4 shows, as a
function of the total number of spins Ntot, the energy
per spin obtained from exact diagonalization on ®nite
size rings (®lled circles), ®nite size opened chains (®lled
squares) and the two-window results (empty circles),
using the exact eigenvector for the Ntot/2 chains.

All three curves converge towards the exact result of
Bethe, with the chain exact calculations showing a pos-
itive convergence whilst the ring results show a negative
convergence due to the fact that there is one more
exchange interaction in the ring.

The ESF results shown in Fig. 4 are obtained with
only two windows. They are based on the eigenvector of
the Ntot/2 sites open chain but included in a ring with
Ntot sites. The resulting energy is thus closer to the ring
result. The energy per spin actually shows a positive
convergence although it is below the Bethe ansatz for
Ntot � 20. For Ntot � 24, 28 and 32 spins, the energy
per site in unit of J is ÿ1:38530, ÿ1:38511 and ÿ1:38507,
respectively.

In order to compare the ESF and the exact result on a
ring, it is also interesting to look at the spin correlation
function:

hSi
!
�S
!
i�1i � 1

2
hP̂i; i�ni ÿ 1

4
:

This is plotted in Fig. 5 for a 16-site ring from the exact
eigenvector and the corresponding 2-window ESF.

The exact eigenvector shows an oscillating and van-
ishing correlation function with the separation between
spins. This is the manifestation of the ``spin liquid'' na-
ture of the spin state. The ESF almost perfectly repro-
duces the results. With this rather large window size, the
degradation due to the inter-SW e�ects in the diagonal
contribution are almost perfectly balanced by the o�-
diagonal terms. The two-window ESF thus appears to be
a very faithful approximation of a ring with a doubled
size. Obviously, for larger window sizes, results would
get even better, allowing, in the present state of the art,
for a 48-site ring to be described from a spin chain
containing only 24 spins.

Fig. 4. Energy per spin for ®nite rings, ®nite chains and the two-
window ESF (Ntot is the total number of spins � N*P). The exact
Bethe result is )2Ln 2

Fig. 5. Spin correlation functions for the 16-site ring and the
corresponding 2-window ESF
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7.2 In®nite rings

In the limit of an in®nite number of windows, the T�N�
matrices vanish, and therefore the HM;N functions
become uncoupled. One is left with a superposition of
orthogonal and non-interacting states and the expecta-
tion values obtained from the symmetrized state are thus
just directly obtained from the diagonal terms. The
energy becomes:

E1 �
PP

M�1
PP

l�1 dMM�1hHM;1jĤjHM�l;1iPP
M�1

PP
l�1 dMM�1hHM;1jHM�l;1i

;

E1 � 1

P

XP
M�1
hHM;1jĤjHM;1i � hH1;1jĤjH1;1i

and the energy per spin takes the somehow delusively
simple form:

e1 � E1
N*P

� 1

P
e� J

2

� �
:

The ESF energy per spin therefore converges slightly
above the ®nite chain result. Figure 6 shows the energy
per spin as a function of the number of windows, for 8 to
16-spin partitioning. The position of the asymptote
depends on the window's size. With larger windows, the
relative weight of the constant inter-SW contribution
decreases while the window energy decreases.

The correlation function hP̂i; i�ni reduces to a mean
value over the di�erent partitions:

hP̂i; i�ni � 1

P

XP
M�1
hHM;1jP̂i; i�njHM;1i ;

using the translational symmetry relation

hHMÿl;1jP̂i; i�njHMÿl;1i � hHM;1jP̂i�l; i�n�ljHM;1i
one gets

hP̂i; i�ni � 1

P

XP
l�1
hHM;1jP̂i�l; i�n�ljHM;1i ;

obtained in a single partition. The correlation function
for nth neighbours is thus just the mean value of all
similar pairs in one single partition. Two cases arise:

hHM;1jP̂i;i�njHM;1i
�hHa

MjP̂i;i�njHa
Miwheniandi+nbelongtowindowa

hHM;1jP̂i;i�njHM;1i
�1
2
wheniandi+ndonotbelongtothesamewindow

In Fig. 7, the correlation function is given for 20-spin
windows and compared to the exact correlation function
in a 24-spin ring. When the neighbouring range extends
beyond the size of the window, the correlation function
becomes equal to 1/2, which corresponds to

hSi
!
�S
!
i�1i � 0: the spins are uncorrelated. The degrada-

tion of the energy compared to the exact result is due to
this imposed uncorrelation outside the window. Note
that even for pairs within the window range, there are
some partitions for which the two spins are in distinct
windows. Therefore, a contamination of the short-range
correlation occurs that originates in the imposed parti-
tioning of the spin function. The longer the range, the
higher the degree of contamination. In this respect it is
useful to use the largest possible window to ensure a
good description of short to medium-range spin corre-
lation.

The symmetry adapted ESF insures that all hSi
!
�S
!
i�1i

are independent of the spin position i. A comparison for

the ®rst neighbour correlation hSi
!
�S
!

i�1i was made with
the embedded result of Miguel et al. [16]. The 20-spin
ESF gives ÿ0:43413; the embedding technique based on
18-spins chains gives ®rst neigbour values oscillating
between ÿ0:4434 and ÿ0:4406 whilst the exact Bethe
result is ÿ0:4431. It is therefore clear that the ESF
should only be considered as a convenient zeroth-order
model spin function.

8 Extension to three-spin exchange

Three-spin exchange terms in the Hamiltonian take the
form:

Jpqr P̂
qrp
pqr and Jpqr P̂

rpq
pqr :

We write the Hamiltonian as:

Ĥ �
XP�N
�p;q�

Jpq P̂pq �
XP�N
�p;q;r�

Jpqr P̂qrp
pqr � P̂rpq

pqr

� �
where summations are now over distinct spins only.

For three-spin exchange interactions involving spins
that belong to di�erent windows, these permutations
may be decomposed to:

P̂
qrp

pqr � P̂pqP̂qr � P̂prP̂pq � P̂qrP̂pr

and

P̂
rpq

pqr � P̂prP̂qr � P̂qrP̂pq � P̂pqP̂pr :
Fig. 6. Energy per spin as a function of the number of windows N,
for various window sizes P
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Evaluation of the expectation values in a given partition,
using the appropriate decomposition, yields the follow-
ing cases:

1. Spins p, q and r belong to the same window i:

JpqrhHM;N jP̂qrp

pqr � P̂
rpq

pqr jHM;Ni
� JpqrhHi

M jP̂
qrp

pqr � P̂
rpq

pqr jHi
Mi :

2. Spins p and q belong to the same window i, spin r to
another window:

JpqrhHM;NjP̂qrp

pqr � P̂
rpq

pqrjHM;Ni � JpqrhHi
MjP̂pqjHi

Mi :

3. Spins p, q and r belong to distinct windows:

JpqrhHM;NjP̂qrp

pqr � P̂
rpq

pqrjHM;Ni � Jpqr
2

:

For a given partition, the magnetic energy per win-
dow may be cast in the following form that distinguishes
between an intra-SW contribution and an inter-SW
constant contribution:

Eintra �
XP
�p;q�2i

JpqhP̂pqi �
XP
�p;q;r�2i

JpqrhP̂qrp

pqr � P̂
rpq

pqri

�
XP
�p;q�2i

X
r external

3JpqrhP̂pqi ;

Einter �
XP
p

X
q external

Jpq
2
�
XP
p

X
q external

X
r external

Jpqr
2

with, in the last sum, p, q and r belonging to three
distinct windows.

Calculation of the o�-diagonal terms may be carried
out in the same way as for the simple Heisenberg
Hamiltonian. Such matrix elements also vanish for an
in®nite number of windows and the asymptotic value of
the energy per window is thus:

E1 � E�H�M;1�� � Eintra � Einter 8 M :

9 Optimization of the SW function

The energy expression for the in®nite chain may be used
for the variational optimization of the function Hi

M. We
de®ne the intra-SW Hamiltonian for a given window:

Ĥ
i

intra �
XP
�p;q� 2 i

JpqP̂pq �
XP

�p;q;r� 2 i

Jpqr P̂
qrp

pqr � P̂
rpq

pqr

� �
�
XP
�p;q�2i

X
r external

3JpqrP̂pq

and the inter-SW Hamiltonian (constant) as

Ĥ
i

inter �
XP
p2 i

X
q external

Jpq
2
�
XP
p2 i

X
q external

X
r external

Jpqr
2

:

The expectation value of Ĥintra gives Eintra:
The expectation value of Ĥi

inter gives Einter.
The norm of Hi

M is:

D � hHi
MjHi

Mi:
Di�erentiating with respect to the spin function Hi

M,
we get:

dD � hdHi
MjHi

Mi � hHi
MjdHi

Mi ;

dEintra � hdHi
MjĤ

i

intrajHMi � hHi
MjĤi

intrajdHi
Mi ;

dEinter � 0 :

Setting the di�erential of the Lagrangian
L � Eintra � Einter ÿ e�Dÿ 1� to zero leads to the opera-
tor equation:

Ĥi
intrajHi

Mi � ejHi
Mi :

In this case, the contribution of three-spin inter-SW
exchange to the intra-SW Hamiltonian produces an ei-
genvalue equation that di�ers from the the equation for
the isolated open chain. In the case of the Heisenberg
Hamiltonian restricted to two-spin exchange, the two
equations would be identical.

10 Conclusion

Although it does not account for long-range correlation,
the ESF main quality lies in its ability to provide a
¯exible symmetry-adapted spin function that may cor-
rectly approximate the short-range spin ¯uctuations.
The optimized window function is an eigenvector of a
®nite size problem with open boundaries, but the
resulting ESF is symmetry adapted by combining
the translationally equivalent ways of partitioning the
lattice. In comparison to exact spin functions calculated
for isolated open clusters, all symmetry equivalent spins
are equally treated in terms of the interactions with their
neighbourhood.

Exact results obtained on ®nite rings may be ex-
tremely well reproduced by a two-window ESF built
from half-size open chains, with a drastic reduction in
the computational size of the variational problem. In®-

Fig. 7. Spin correlation functions for an in®nite ring partitioned
into P � 20-spin windows, compared to the exact result for a 24-
spin ring
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nite ESFs, with su�ciently large windows, correctly
reproduce the short-range correlation among close
neighbours that is chemically relevant. However, the
main advantage lies in the possibility of using the ESF in
VB calculations, so as to properly account for the ex-
change component of the electronic energy, without the
arbitrariness of a posteriori spin projection technique.
Assuming that the underlying electronic structure may
be built from symmetry equivalent local orbitals, ap-
proximate SC calculations may be carried out even with
the inclusion of a long-range Coulombic potential. The
ESF procedure allows for the evaluation of the exchange
and electrostatic interactions to which the electrons in a
reference window are exposed; these interactions origi-
nate from the whole in®nite lattice. In ®nite size clusters
with periodic boundary conditions, they would not
reproduce what actually occurs in a crystal. PPP semi-
empirical or even ab-initio potentials may be used.
Applications to electronic SC calculations within the
framework of the Hubbard and PPP Hamiltonians will
be published elsewhere.

The sensitive point is obviously linked to the size of
the window. This is critical because the size of the spin
basis set explodes with the number of spins. The state of
the art in terms of exact diagonalization of the Heisen-
berg problem lies around 30 spins. For a 2D ESF, the
largest partitioning would be made of 6� 6-spin win-
dows only, which would a�ect the short-range correla-
tion more e�ectively than in 1D. Nevertheless, the
method may accomodate any approximate spin function
calculated on larger windows.

The ESF may then be considered as a zeroth-order
function that may be improved on two major points.

1. A better connection of the windows, treating in a
more thorough way the inter-window interactions; den-
sity matrix renormalization group techniques may then
be useful [17, 18], as well as the Hamiltonian dressing
techniques [15, 16], that allow for the description of the
inter-window couplings with a truncated con®guration
interaction incorporating the external space in an e�ec-
tive way.

2. One may also follow the size-consistent coupled
cluster techniques [24] such as found in the work of
Klein and Garcia-Bach [21] based on a cluster expansion
of the wavefunction itself, that allows for the proper
account of independent spin excitations. Besides, the
more general cumulant approach [19, 25] with an ex-
ponential ansatz should provide an e�ective way for
treating 2D or 3D lattices.
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Appendix

Recurrence on the T matrices

The window function writes:

Hi
M �

X
k

Ckdk :

It is developed as a combination of spin products ciM;p and �ciM;q
which describe the subpartitions containing n and Pÿ n spins, re-
spectively:

Hi
M �

X2n
p

X2Pÿn
q

Cpq ciM;p �ciM;q :

The subpartitions which coincide in both partitions are inverse
to one another. We can develop the SW function in the ket parti-
tion:

Hj
M�n �

X2Pÿn
r

X2n
s

Drs �cjM�n; r cjM�n; s :

The T�N� matrix is de®ned as:

T�N�as � hHM;NjcNM�n; sHM�n; Nÿ1�cNM�n; ai
where HM;N � HM for N windows in partition M,
HM�n;Nÿ1 � HM�n for Nÿ1 windows in partition M+n.

Upper indices are suppressed hereafter. We impose that the
ordrering of the spin indices is the same in the bra and the ket.

T�N�as � hHM;NjcM�n; s�1; 2; ...;n�HM�n; Nÿ1�c
M�n; a��Nÿ1�P�n�1; ...;NP� i

is then written as:

T�N�as � hHM;NjcM�n; sHM�n; Nÿ1�cM�n; ai
when decomposing the last window in the bra:
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T�N�as � HM;Nÿ1
X2n
p

X2Pÿn
q

CpqcM;p�cM;qjcM�n; sHM�n; Nÿ1�cM�n; a

* +
;

T�N�as �
X2n
p

X2Pÿn
q

CpqhHM;Nÿ1cM;p�cM;qjcM�n; sHM�n; Nÿ1�cM�n; ai ;

T�N�as �
X2n
p

X2Pÿn
q

CpqhHM;Nÿ1cM;pjcM�n; sHM�n; Nÿ1ih�cM;qj�cM�n; ai ;

T�N�as �
X2n
p

X2Pÿn
q

CpqhHM;Nÿ1cM;pjcM�n; sHM�n; Nÿ1idqa ;

T�N�as �
X2n
q

CpahHM;Nÿ1cM;pjcM�n; sHM�n; Nÿ1i :

The last window in the ket is decomposed to:

T�N�as �X2n
p

X2Pÿn
r

X2n
t

CpaDrthHM;Nÿ1cM;pjcM�n; sHM�n; Nÿ2�cM�n; rcM�n; ti ;

T�N�as �X2n
p

X2Pÿn
r

X2n
t

CpaDrthHM;Nÿ1jcM�n; sHM�n; Nÿ2�cM�n; rihcM; pjcM�n; ti ;

T�N�as �X2n
p

X2Pÿn
r

X2n
t

CpaDrthHM;Nÿ1jcM�n; sHM�n; Nÿ2�cM�n; ridpt ;

T�N�as �X2n
p

X2Pÿn
r

CpaDrphHM;Nÿ1jcM�n; sHM�n; Nÿ2�cM�n; ri :

We eventually get: T�N�as �
X2n
p

X2Pÿn
r

CpaDrpT
�Nÿ1�
rs :

Overlap integrals

The overlap integral between two spin functions de®ned in two
distinct partitions is then easily calculated:

hHM;njHM�n;Ni �
X2Pÿn
i

X2n
j

DijhHM:NjcM�n;jHM�n;Nÿ1�cM�n;ii

�
X2Pÿn
i

X2n
j

Dij T
�N�
ij

with T
�N�
ij �

X2n
p

X2Pÿn
r

CpiDrpT
�Nÿ1�
rj :

The ®rst term in the recurrence is:

T
�1�
rj � hHM;1jcM�n; j�cM�n; ri ;

T
�1�
rj �

X2n
p

X2Pÿn
q

CpqhcM;p�cm;qjcM�n; j�cM�n; ri ;

T
�1�
rj �

X2n
p

X2Pÿn
q

Cpqdpjdqr � Cjr :

Intra-window matrix element

The intra-window Hamiltonian Ĥi
I only acts on the spins belonging

to window i:

Ĥi
IjHM�n;Ni � Ĥi

Ij
YN
p

Hp
M�ni �

Y
p6�i

Hp
M�n

 !
Ĥi

IjHi
M�ni :

If Hi
M�n is an eigenfunction of Ĥi

I with eigenvalue
e : Ĥi

IjHi
M�ni � ejHi

M�ni we get:

hHM;NjĤi
IjHM�n;Ni � e HM;Nj

Y
p6�i

Hp
M�n

 !
Hi

M�n

* +
:

We decompose Hi
M�n : Hi

M�n �
X2Pÿn
r

X2n
s

Drs�cM�n; rcM�n; s

hHM;NjĤi
IjHM�n;Ni

� e
X2Pÿn
r

X2n
s

Drs HM;Nj
Y
p6�i

Hp
M�n

 !
�cM�n; rcM�n; s

* +
:

One may label the spins so that HM�n;N depends on spins 1,
2, . . . , n, in the same order from left to right than HM;N.

hHM;NjĤi
IjHM�n;Ni

� e
X2Pÿn
r

X2n
s

Drs HM;NjcM�n; s
Y
p6�i

Hp
M�n

 !
�cM�n; r

* +
;

hHM;NjĤi
IjHM�n;Ni

� e
X2Pÿn
r

X2n
s

DrshHM;NjcM�n; s HM�n ;Nÿ1 �cM�n; ri ;

hHM;NjĤi
IjHM�n;Ni � e

X2Pÿn
r

X2n
s

Drs T
�N�
rs ;

hHM;NjĤIjHM�n;Ni � Ne
X2Pÿn
r

X2n
s

Drs T
�N�
rs :

Inter-window matrix element

hHM;NjĤIIjHM�n;Ni �
XN
i�1
hHM;NjĤi;i�1

II jHM�n;Ni ;

Ĥi;i�1
II jHM�n;Ni �

Y
j 6�i; j 6�i�1

Hj
M�n

 !
Ĥi;i�1

II jHi
M�nH

i�1
M�ni ;

Hi
M�nH

i�1
M�n is decomposed in the sub-window partition:

jHi
M�nH

i�1
M�ni

�
X2Pÿn
p

X2n
q

X2Pÿn
r

X2n
s

DpqDrsj�cM�n; p cM�n; q �cM�n; r cM�n; si ;

Ĥi;i�1
II jHi

M�nH
i�1
M�nHM�n; Nÿ2i

�
X2Pÿn
p

X2n
q

X2Pÿn
r

X2n
s

DpqDrsĤ
i;i�1
II

� j�cM�n; p cM�n; q �cM�n; r cM�n; s HM�n;Nÿ2i :
Exchange occurs between the internal sub-windows. These two sub-
windows build up window i + 1 in partition M. One may de-
compose the corresponding spin function in the bra.
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Hi�1
M �

X2n
a

X2Pÿn
b

CabcM;a �cM; b

hHi�1
M HM;Nÿ1 jĤi;i�1

II jHi
M�n Hi�1

M�n HM�n;Nÿ2i

�
X2n
a

X2Pÿn
b

X2Pÿn
p

X2n
q

X2Pÿn
r

X2n
s

Dpq DrsCab T
�Nÿ1�
ps

�hcM;a�cM;bjĤi;i�1
II jcM�n;q �cM�n;ri :

In the orthogonal basis of spin products, exchange acting upon
cM�n; q �cM�n; r gives a contribution only when it produces cM; a �cM; b.
The summation reduces to a quadruple sum:

hHM;NjĤi;i�1
II jHM�n;Ni � J

X2Pÿn
p

X2n
q

X2Pÿn
r

X2n
s

Dpq Drs Cab T�Nÿ1�ps

when the condition Ĥi;i�1
II jcM�n; q�cM�n; ri � jcM�n; a �cM�n; bi is ful-

®lled.

323


